Genomic inbreeding estimates with imputed genotypes in Italian Holstein dairy cattle

Christos Dadousis¹, Michela Ablondi¹, Jan-Thijs van Kaam², Alberto Sabbioni¹

¹Department of Veterinary Science, University of Parma, Via del Taglio 10, 43126 Parma, Italy

²ANAFIBJ - Associazione Nazionale Allevatori della Razza Frisona, Bruna e Jersey Italiana, Via Bergamo 292, 26100 Cremona, Italy

Introduction

Meyermans et al. BMC Genomics (2020) 21:94 https://doi.org/10.1186/s12864-020-6463-x

METHODOLOGY ARTICLE

How to study runs of homozygosity using PLINK? A guide for analyzing medium density SNP data in livestock and pet species

R. Meyermans[†], W. Gorssen[†], N. Buys and S. Janssens^{*}

Saura et al. Genetics Selection Evolution (2015)47:1 DOI 10.1186/s12711-014-0081-5

SANG

RESEARCH

Detecting inbreeding depression for reproductive traits in Iberian pigs using genome-wide data

María Saura^{1*}, Almudena Fernández¹, Luis Varona², Ana I Fernández¹, Maria Ángeles R de Cara³, Carmen Barragán¹ and Beatriz Villanueva

Detection and quantification of inbreeding depression for complex traits from SNP data

BMC Genomics

Open Access

Check for updates

Genetics

Selection Evolution

Open Access

RESEARCHARTICLE

Loic Yengo^{a,1}, Zhihong Zhu^a, Naomi R. Wrav^{a,b}, Bruce S. Weir^c, Jian Yang^{a,b}, Matthew R. Robinson^{a,d}, and Peter M. Visscher^{a,b,1}

*Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; ^bQueensland Brain Institute, The University of Oueensland, Brisbane, OLD 4072, Australia: "Department of Biostatistics, University of Washington, Seattle, WA 98195; and ⁴Department of Computational Biology, University of Lausanne, Lausanne, CH-1015, Switzerland

anetics

The value of genomic relationship matrices

Genomic

inbreeding

debate,

to estimate levels of inbreeding

Beartz nilonuera * Amudera Fernández , Nata saura ; Amando Caballera ; Jesús Fernández ; Beartz nilonuera * Amudera Fernández ; Nata saura ; Amando Pong Nong

action

Comparative evaluation of genomic inbreeding parameters in seven commercial and autochthonous pig breeds

G. Schiavo¹, S. Bovo¹, F. Bertolini², S. Tinarelli^{1,3}, S. Dall'Olio¹, L. Nanni Costa¹, M. Gallo³ and L. Fontanesi^{1†} o

¹ Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin 46, 40127 Bologna, Italy;² National Institute of Aguatic Resources, Technical University of Denmark, Kemitorvet, Building 202, 2800 Kongens Lyngby, Denmark; ³Associazione Nazionale Allevatori Suini, Via Nizza 53, 00198 Roma, Italy

> frontiers in Genetics

ORIGINAL RESEARCH published: 22 April 2 doi: 10.3389/fgene.2020.00

Controlling Coancestry and Thereby Future Inbreeding by **Optimum-Contribution Selection** Using Alternative **Genomic-Relationship Matrices**

G. T. Gebregiwergis1*, Anders C. Sørensen2, Mark Henryon34 and Theo Meuwissen

¹ Department of Animal and Aquaculture Sciences, Norwegian University of Life Sciences, Ås, Norway, ² Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark, ² Seges, Copenhagen, Denmark, ⁴ School o Agriculture and Environment, University of Western Australia, Crawley, WA, Australia

Published online: July 29, 2014

Population Aspects of Consanguinity

Human Hereditv

Management of Genetic Diversity in

the Era of Genomics

Hum Hered 2014;77:49-62 DOI: 10.1159/000358224

Inbreeding Coefficient Estimation with Dense SNP Data: Comparison of Strategies and Application to HapMap III

Steven Gazal^{a, c} Mourad Sahbatou^d Hervé Perdry^{b, e} Sébastien Letort^{f, g} Emmanuelle Génin^{f, g} Anne-Louise Leutenegger^{a, h}

^aGenetic Variability and Human Diseases Inserm, 1946, ^bUMR 669 at ^cUniversité Paris Sud, and ^dFondation Jean Dausset CEPH, Paris, eInserm, U669, Villejuif, ^fGénétique, Génomique Fonctionnelle et Biotechnologies, Inserm, U1078, and ⁹Centre Hospitalier Régional et Universitaire de Brest, Brest, and ^hInstitut Universitaire d'Hématologie, UMR 946, Université Paris-Diderot, Paris, France

Introduction

□ Inbreeding estimates derived from **pedigree** data (F_{ped})

- Question on pedigree quality
- IBD theory
- Genomic data (mainly in the form of SNP) is expected to be more precise on the estimation of the inbreeding level. However, not straightforward...:
 - IBS theory
 - Different algorithms [4 plink, \geq 3 GRM, ROH (various definitions of ROH)]
 - Different SNP quality control (call rate, MAF, HWE, LD)
 - Different genotypic SNP panels (SNP density, commercial vs. private)
 - SNP imputation (different algorithms and strategies) → the rule nowadays

• ...

Compare different algorithms for estimating genomic inbreeding coefficients with imputed SNP data

Compare genotyped vs. imputed SNP genomic inbreeding coefficients

Material and Methods

Illumina Infinium BovineHD BeadChip (n = 678, nSNP=79,900 – HD)

• Consistent

- Froh highest mean
- Froh>0
- All but Froh [-,+]
- Fgrm2 highest variability
- Froh lowest variability
- Comparable variability between genotyped-imputed/method

GeneSeek Genomic Profiler HD-150K (n=641, nSNP=77,085 – HD)

genotyped

- Consistent
- $F \cong Fgrm2$
- Corr to Fped higher compared to illumina

GeneSeek Genomic Profiler HD-150K (n=641, nSNP=77,085 – HD)

- Comparable variability between genotyped-imputed/method
- Variability across methods

GeneSeek Profiler 3 (n=10,679, nSNP=13,870 – MD)

genotyped

• Corr to Fped higher in genotyped

GeneSeek Profiler 3 (n=10,679, nSNP=13,870 – MD)

- Variability between genotyped-imputed
- For all but Fhat1 the imputed had higher variability than the genotyped

۲

GeneSeek Profiler 4 (n=33,394, nSNP=16,862 – MD)

genotyped

imputed

Corr to Fped higher in genotyped ... intermediate results

Results and Discussion

- For all but Fhat1 and Fhat2 the imputed had higher variability than the genotyped
- Extreme values with genotyped
- Subgrouping

GeneSeek MD (n=12,030, nSNP=27,331 – MD)

genotyped

• Corr to Fped higher in genotyped, but fairly consistent between genotyped-imputed

Genotyped vs. imputed

GeneSeek MD (n=12,030, nSNP=27,331 – MD)

• Extreme values with genotyped and imputed

Labogena MD (n=10,705, nSNP=40,218 – MD)

genotyped

• Corr to Fped higher in genotyped

panel: Labogena MD, imputed Fhat1 Fhat2 Fhat3 Fgrm2 Froh Fgrm Fhat1 Fhat2 Fhat3 Fgrm Fgrm2 Froh 0.82 0.83 0.4 -0.25 -0.84 10 sit Der 0.25 -0.25 0.00 0.50 0.75 -0.2 0.84 1.0- 0.89 genotyped value o SNP panel: Labogena MD, genotyped Fhat1 Fhat2 Fhat3 Fgrm Fgrm2 Froh 0.00 0.25 1.0 2.0 0.50 Froh 0.5 -0.98 0.4 -Avg pearson cor = 0.85 000 <u>}</u> 10 0.3 Der 0.2 0.2 0.4 genotyped imputed genotyped imputed genotyped imputed genotyped imputed genotyped imputed genotyped imputed -1.0 -0.5 0.0 0.5 1.5 imputed

Labogena MD (n=10,705, nSNP=40,218 – MD)

Genotyped vs. imputed

 The imputed had always higher variability than the genotyped

Results and Discussion

Summary over SNP-panels across methods

Summary over methods across SNP-panels

Conclusion

FROH

- Seems more robust
- The only method with Fgen>0
- Higher mean values
- Always higher correlations with Fped
- Generally lower variability

HD

- Imputed ≅ genotyped
- Slightly better results of GeneSeek 150k vs. Illumina 777k

MD

- Correlations are, in general, driven by subgroups
- The corFped, Fgen was higher for the genotyped vs. the imputed
- Differences among SNP panels exist
- Lagogena MD appears more robust compared to the rest MD tested

 \Box Fhat2 \neq F

□ High extremes → GeneSeek 4 and GeneSeek MD!

Acknowledgements

Prof. Summer A. Prof. Cipolat-Gotet C. Prof. Cassandro M. Dr. Marusi M. Dr. Finocchiaro R.

ASPA 2021

24th CONGRESS OF THE ANIMAL SCIENCE AND PRODUCTION ASSOCIATION ANIMAL SCIENCE AND SOCIETY CONCERNS SEPTEMBER 21-24, 2021 PADOVA (ITALY)

Thank you for your atttention!

