

A tool to efficiently replace dairy heifers using genomic information

Ferrari, V.,¹ Marusi, M.,¹ Cassandro, M.^{1,2}

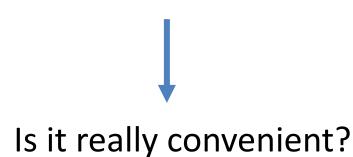
¹Associazione Nazionale Allevatori della Razza Frisona, Bruna e Jersey Italiana (ANAFIBJ), Via Bergamo 292, 26100 Cremona, Italy

²Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy

24th CONGRESS OF THE ANIMAL SCIENCE AND PRODUCTION ASSOCIATION ANIMAL SCIENCE AND SOCIETY CONCERNS JUNE 15-18, 2021 PADOVA (ITALY)

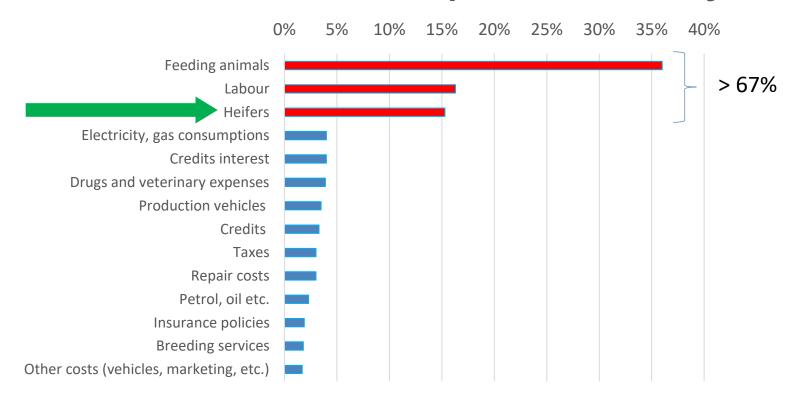
Aim: to develop a dairy heifer management tool

- 1. optimize the number of heifers to replace cows in the dairy herd;
- 2. provide farm specific analyses;
- 3. improve genetic progress;
- 4. reduce costs.



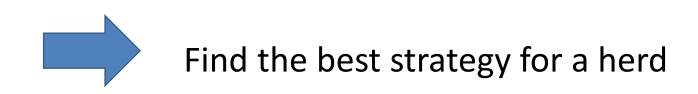
Introduction

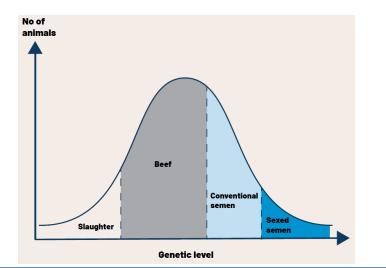
Dairy farmers usually **breed indistinctly all their animals** in order to obtain as many female calves as possible and then raise them as replacement.



What affects herd profitability?

Breed only the animals to keep as replacement





New available technologies in Artificial Insemination (AI)

- Genomic
- Sexed semen
- Crossbreeding with beef semen

Improving genetic merit:

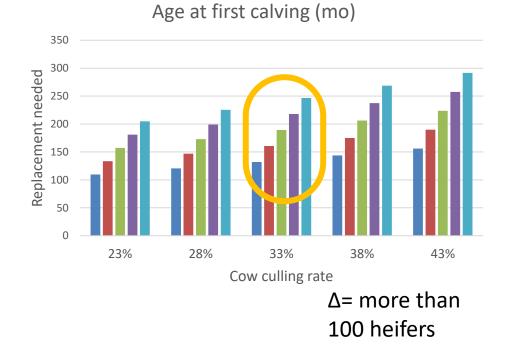
$$\Delta G = \frac{r_{IH} \times i \times \sigma_A}{L}$$

Effects:

- better animals
- evaluation accuracy
- avoid overcrowding conditions
- better animal welfare and sustainability

Parameters affecting the number of annually required replacement animals in a herd

- number of adult cows
- calf heifer culling rate
- adult cow culling rate



How AFC impacts on the number of replacements

400 350 S300 300 250 200 150 100 24 26 28 30 32 50 0 6% 12% 8% 10% 14% Calf-heifer culling rate

Age at first calving (mo)

 Δ = ~ 175 heifers

Heifer Replacement model (Cabrera V.E., 2009)

Economical and environmental impact of a reduction in the number of heifers needed

2 scenarios

- #1 Herd with 200 Holstein cows with AFC 28 mo
- #2 Herd with 200 Holstein cows with AFC 24 mo

Dairy heifers replacement needs calculation

	#1 Herd	#2 Herd
Adult cows (n°)	200	200
Adult cow culling rate (%/year)	28%	28%
Calf – heifer culling rate (%/year)	8%	8%
Age at first calving (month)	28	24
Heifers needed	160	133 Diff 27

Economic impact

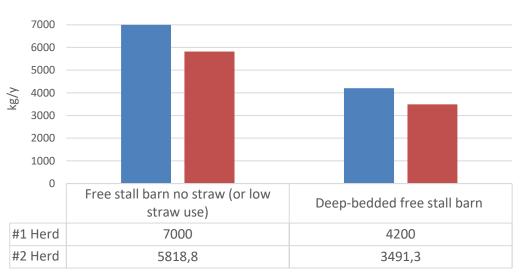
	#1 Herd	#2 Herd
Feed cost (€/d)	2	2
Milk price (€/I)	0.35	0.35
Age at first calving (month)	28	24
Heifers needed (n°/year)	160	133
heifers' maintenance feed costs (€)	273,280	194,712
Gross income from milk (€/head/productive life)	(Δ 120 d * 30 kg/d=3,600 kg milk) 3,600 kg * 0.35 = 1,260 €	

Environmental impact (1/2)

Based on the Lombardia region nitrates Directive of March 2020 (91/676/CEE – 2020-2023)

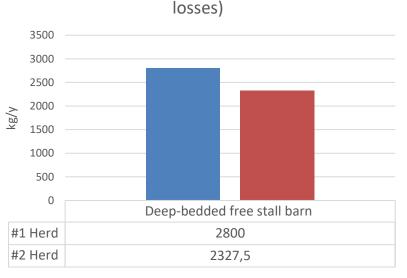
Amount of effluent produced per live weight and per year in relation to the type of housing (dairy heifers 350 kg)

Effluent produced per live weight


■ #1 Herd ■ #2 Herd

Environmental impact (2/2)

Nitrogen emissions: field values per year net of NH_3 emission losses (dairy heifers 350 kg)



Manure nitrogen emissions (net of losses)

24th CONGRESS

OF THE ANIMAL SCIENCE AND PRODUCTION ASSOCIATIC ANIMAL SCIENCE AND SOCIETY CONCERNS JUNE 15-18, 2021 PADOVA (ITALY)

■ #1 Herd ■ #2 Herd

Sewage sludge nitrogen emissions (net of losses)

Conclusion and future perspectives

- Dairy heifers represent both a significant cost for dairy herds and an opportunity.
- Age at first calving is an important aspect when considering the number of required replacements.
- Decreasing age at first calving lead to positive economic effects and environmental impact.

Implement the information in ANAFIBJ mating plan (WAM), considering genomic data also.

Thank you for your attention!! Any questions?

valentinaferrari@anafi.it

valentina.ferrari.5@phd.unipd.it