

III Convegno AISSA#under40

Bolzano, 14-15 luglio 2022

Fertility and management parameters in a tool for the simplified evaluation of global warming potential related to the milk production

Giulia Gislon¹*, Valentina Ferrari²³, Maddalena Zucali¹, Luciana Bava¹, Alberto Tamburini¹, Anna Sandrucci¹

¹Università Degli Studi di Milano, Dipartimento di Scienze Agrarie e Ambientali, 20133, Milano, Italy.

²Associazione Nazionale Allevatori della Razza Frisona, Bruna e Jersey Italiana (ANAFIBJ), Via Bergamo 292, 26100 Cremona, Italy.

³Department of Agronomy, Food, Natural resources, Ánimals and Environment (DAFNAÉ), University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy.

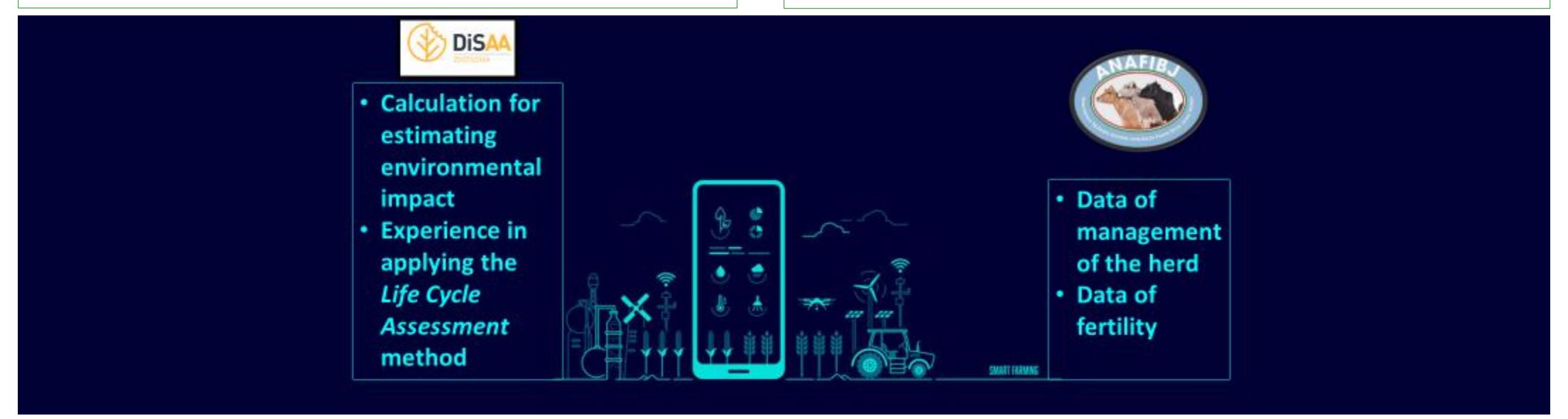
* corresponding author

Introduction

For **improving sustainability of the dairy sector**, farmers and technicians need to have reliable and **easy tools** to identify the strategies that **make the best use of resources**, **minimizing the environmental impact**. In this sense, the overall efficiency of the farms should be considered, including fertility and management parameters of the herd.

Materials and Methods

The aim of the study was to develop an equation for the evaluation of global warming potential (GWP), related to milk production, starting from results of the Life Cycle Assessment analyses and technical variables about management of the herd and land area. Data of fertility and management of the herd were provided by Associazione Nazionale Allevatori della Razza Frisona, Bruna e Jersey Italiana (ANAFIBJ).


A GLM procedure was performed, on **25 dairy farms**, to build an equation suitable to estimate the GWP of milk production at farm level (kg CO₂eq/kg FPCM, fat and protein corrected milk).

Results

The best equation to estimate GWP of 1 kg of FPCM, included the following variables:

Alfalfa on total land %	Lactation duration
Dairy efficiency	Pregnancy rate
Milk protein content	FPCM/hectare
Primiparous cattle restocking	Number of lactation/cow
Amount of feed self-produced	Individual daily milk production
Cornsilage %DMI	Interpartum

The average value of GWP, for the 25 farms, was 1.45 kg CO₂eq/kg FPCM (SD 0.25).

Conclusions

The tool enables to have findings quickly, by providing a method easily applicable on farm scale, without the need for tabulated data or empirical formula. The tool allows farmers and technicians to compare different management strategies to enhance sustainability. In addition, it allows using already existing data concerning fertility and management of the herd, which means finding a clear vision of milk production sustainability at national level and its trend over the time.

References

De Boer, I. J. (2003). Environmental impact assessment of conventional and organic milk production. Livestock production science, 80(1-2), 69-77.

Bava, L., Sandrucci, A., Zucali, M., Guerci, M., & Tamburini, A. (2014). How can farming intensification affect the environmental impact of milk production?. Journal of Dairy Science, 97(7), 4579-4593.

Laca, A., Gómez, N., Laca, A., & Díaz, M. (2020). Overview on GHG emissions of raw milk production and a comparison of milk and cheese carbon footprints of two different systems from northern Spain. Environmental Science and Pollution Research, 27(2), 1650-1666.