

ANIMAL BREEDING SUSTAINABILITY The Italian Holstein experience

<u>Benzoni Lorenzo</u>¹, Finocchiaro Raffaella ¹, Niero Giovanni ³, Invernizzi Guido ², Savoini Giovanni ², Galluzzo Ferdinando ¹, Cassandro Martino ^{1,3}

¹ Associazione Nazionale Allevatori della razza Frisona, Bruna e Jersey Italiana (ANAFIBJ), Via Bergamo, 292 – 26100 Cremona (CR), Italy

² Dipartimento di Medicina Veterinaria e Alimentazione Animale (DIVAS), Via dell'Università 6, 26900 Lodi (LO), Italy;

³ Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy.

vour **CO**V

INTRODUCTION

- Dairy cattle is known to be impactful on greenhouse gases (GHG) emissions for **over 10%** of livestock sector emission globally (*Gerber et al., 2013*);
- Methane (CH₄) and carbon dioxide (CO₂) emissions have been shown to be heritable, providing the basis for applying genetic selection for their reduction (*Cassandro et al., 2010*);
- National breeding programs and the genetic improvement can provide relevant contribution to reduce GHG emissions;
- ANAFIBJ has started to collect **phenotypes** of methane emissions on **Italian Holstein young bulls candidates to the artificial insemination in Italy from 2018** at Genetic Center .

OBJECTIVES

- To set up a routine recording system and data pipeline of biometric measures, feed intake, water intake and GHG emissions from Genetic Center to ANAFIBJ DB;
- Implementation of **experimental protocols** to be applied in **experimental farms**;
- Implementation of **experimental protocols** to be applied in **commercial farms**;
- Evaluate **microbial contribution** to enteric CH₄ emissions;
- Evaluate the reliability of **faeces and buccal swabs as a proxy** of rumen sample.

vour COW

MATERIALS AND METHODS

<u>ANIMALS</u>

- 228 genotyped Italian Holstein young bulls (rank98);
- 61,591 SNPs were available after editing;
- 4-12 months of age;
- Free-stall;
- Ad libitum feeding.

<u>EQUIPMENT</u>

- GreenFeed (C-Lock Inc., Rapid City, SD, USA);
- Laser Methane Detector Mini (Crowcon, Abingdon, UK);
- Flora Rumen Scoop (*Profs Products*).

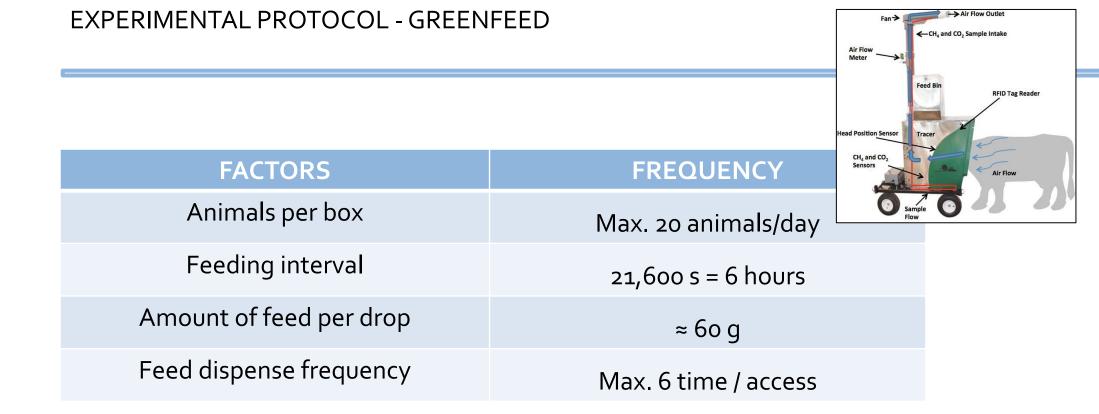
Data from animals:

- Body weight (WEI);
- Body Condition Score (BCS);
- Heart circumference (HG);
- Height (HEI).

Data from GreenFeed:

- Number of visits (NVG);
- Carbon dioxide daily emissions (CO₂);
- Methane daily emission (CH₄);
- Average airflow (AIR);
- Average time at the GreenFeed (ATG).

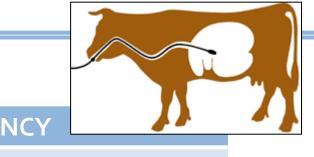
Data from Laser Methane Detector Mini:


• Mean of CH₄ peaks (P_MEAN).

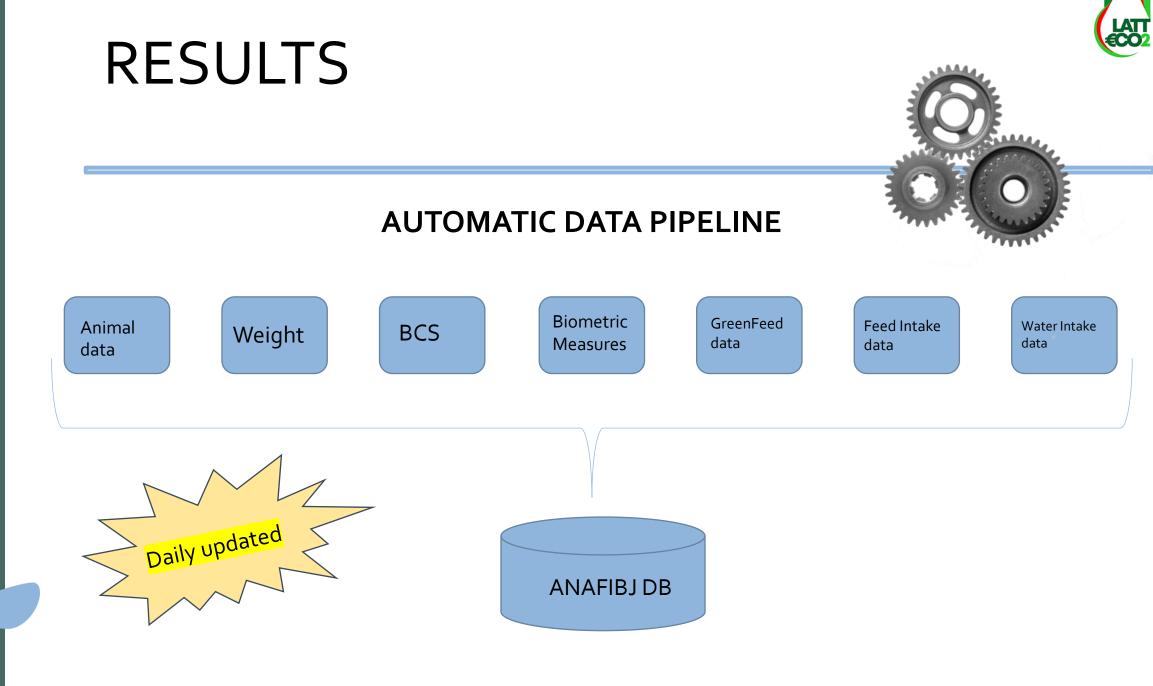
Data from metagenomic analysis:

• Relative abundance of OTU (ABU).

EXPERIMENTAL PROTOCOL – LASER METHANE DETECTOR MINI

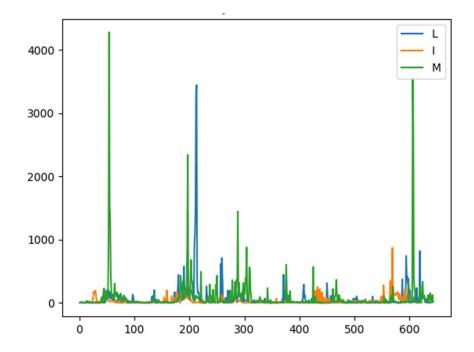

FACTORS - Measuring livestock CH4 emissions with the LMD: a review (Sorg, 2021)

Distance to the animal	1,5 M
Duration of recording	300 s
Number of consecutive days per measurement	5 + 5
Time of day	8:00 am, 12:00 am, 3:00 pm;
Animal activity	Standing
Pointing angle	180° (front of the animal)


EXPERIMENTAL PROTOCOL – RUMINAL FLUID SAMPLE / BUCCAL SWABS / FAECES

FACTORS	FREQUENCY				
Position of the animal	Standing with head locked				
Frequency of sampling	2 times in 100 days				
Time interval between sampling	≈ 8o days				
Storage condition	- 80°C				
Instrumental analysis	Shotgun Metagenomic Sequencing 16SrRNA				

your **COW**


our **FUTURE**

RESULTS

LMD TESTING TRIAL

	peak_mean_M	raw_mean_M	peak_mean_l	raw_mean_l	peak_mean_L	raw_mean_L
Giorno 1	66.13	29.04	64.28	31.51	100.53	36.40
Giorno 2	75.44	32.69	45.83	20.41	139.98	43.98

- LMD are **not reliable** and repetable;
- No correlation between LMD and GreenFeed.
- Small sample size?
- Short time interval?

RESULTS

Trait	Metric	N	Mean	SD
WEI	kg	885	309.3	77.5
BCS	score	849	3.0	0.3
HG	cm	715	157.3	14.2
HEI	cm	714	125.5	7.7
«GREEN TRAITS»				

NVG	count	2,817	3.9	1.7
CO ₂	g/d	2,817	6198.2	1103.9
CH ₄	g/d	2,817	223.6	51.8
AIR	L/s	2,817	29.2	4.0
ATG	S	2,817	329.3	87.5

Trait	h ²
WEI	0.45 (0.24)
BCS	0.51 (0.20)
HG	0.44 (0.25)
HEI	0.39 (0.23)

NVG	0.36 (0.11)
CO ₂	0.48 (0.21)
CH ₄	0.40 (0.17)
AIR	0.45 (0.09)
ATG	0.24 (0.11)

A selection index to reduce GHG emissions can be set up without compromising growth, BCS, height and feed intake.

	WEI	BCS	HG	HEI	NVF	AIF	NVG	CO2	CH4	AIR
WEI		0.84	0.75	0.64	0.95	0.99	0.93	0.92	0.92	0.94
BCS	0.84		0.72	0.55	0.90	0.98	0.97	0.93	0.93	0.95
HG	0.75	0.72		0.11	0.90	0.98	0.94	0.90	0.90	0.94
HEI	0.64	0.55	0.11		0.90	0.97	0.95	0.92	0.92	0.95
NVF	0.95	0.90	0.90	0.90		0.75	0.73	0.63	0.67	0.69
AIF	0.99	0.98	0.98	0.97	0.75		0.67	0.55	0.58	0.61
NVG	0.93	0.96	0.94	0.95	0.73	0.67		0.70	0.77	0.92
CO2	0.92	0.93	0.90	0.93	0.63	0.55	0.70		0.81	0.81
CH4	0.92	0.93	0.90	0.92	0.67	0.58	0.77	0.81		0.83
AIR	0.94	0.95	0.94	0.95	0.69	0.61	0.92	0.81	0.83	

vour COW

CONCLUSION

- To set up a routine recording system and data pipeline of biometric measures, feed intake, water intake and GHG emissions from Genetic Center to ANAFIBJ DB;
- Implementation of experimental protocols to be applied in experimental farms;
- Implementation of experimental protocols to be applied in commercial farms;
- Evaluate microbial contribution to CH₄ emissions;
- Evaluate the reliability of **faeces and buccal swabs as a proxy** of rumen sample.

Lorenzo Benzoni

lorenzobenzoni@anafi.it

www.anafibj.it

