

Predicted methane emission a new breeding value for Italian Holstein

Finocchiaro R, Galluzzo F, van Kaam J,B,C,H,M, Cassandro M,

ASPA2023

Animal Production Science: innovations and sustainability for future generations

Monopoli (Bari, Italy), June 13-16, 2023

Introduction

- Livestock farming is indirectly linked to GHG emissions, mainly due to enteric fermentation,
- Methane and carbon dioxide from cattle emissions are heritable, providing the basis for applying genetic selection for their reduction,
- Several countries are working in this direction and some had already published breeding value for this "trait"

Global emissions from Livestock

Strategies to lower emissions intensity and gross emissions in ruminants

- Managing herd life and replacements bred
- Nutrition (e.g. lipids, concentrates) and inhibitors (e.g. 3-NOP)
- · Vaccines and early life programming
- Feed efficiency
- Fertiliser optimisation
- On-farm energy savings
- Selecting for low CH4 production directly
- Breeding for higher producing cows (reducing emissions per kg product)

The role of genetics in creating a sustainable future Pryce & Richardson Herd'23 Bendigo (AU) 13-16 march 2023

J. Dairy Sci. 105:4272–4288 https://doi.org/10.3168/jds.2021-21277

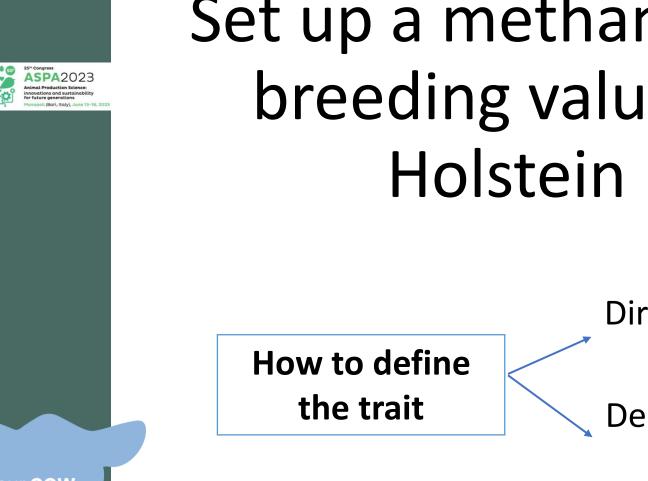
© 2022, The Authors. Published by Elsevier Inc. and Fass Inc. on behalf of the American Dairy Science Association[®]. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Reducing greenhouse gas emissions through genetic selection in the Australian dairy industry

C. M. Richardson,^{1,2} © P. R. Amer,³ © C. Quinton,³ © J. Crowley,³ F. S. Hely,³ © I. van den Berg,¹ © and J. E. Pryce^{1,2}* ©

¹Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia ²School of Applied Systems Biology, La Trobe University, Bundoora, Victoria 3083, Australia ³AbacusBio Limited, P.O. Box 5585, Dunedin, New Zealand

Latinoamércia y El Caribe 17 %


urop

Alfaro & Mejias (2022) from FAO 2016

orteaméric

Set up a methane emission (CH4) breeding value for the Italian Holstein population

AIM

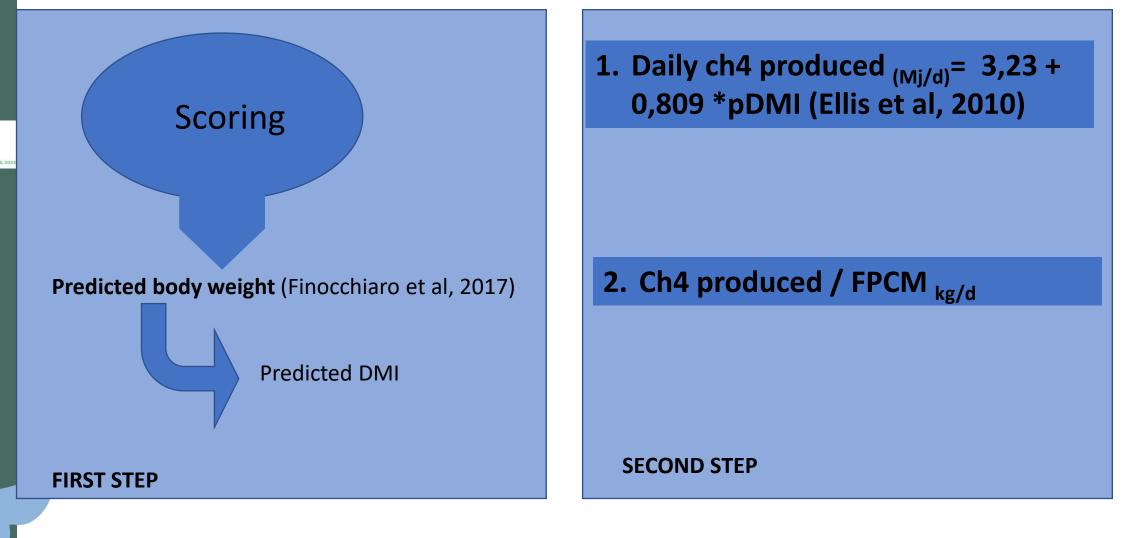
Direct phenotype – Labour and costly

Derive phenotype – Proxies – Economic

Direct traits and Proxies

- 25° Congress ASPA2023 Animal Production Science: Innovations of sustainability or future generations Hennopol (Brox), Rady, June 19-16, 302
- Data collection phenotype collected at the Genetic Center (FedANA session Thursday afternoon)
- MID-Infrared Spectrum → Practically free data, but need a representative reference population with lots of variation
- Microbiome Profile → Less expensive, but still labour intensive and invasive
- Literature formula → derive trait making use of National routine data Economic

Direct traits and Proxies


- Data collection phenotype collected at the genetic center (FedANA sessione Thursday afternoon)
 - MID-Infrared Spectrum → Practically free data, but need a representative reference population with lots of variation
 - Microbiome Profile → Less expensive, but still labour intensive and invasive
 - Literature formula → derive trait making use of National routine data Economic

CH4:Predicted Phenotype

25th Congress ASPA2023 Animal Production Science: Innovations and sustainability for future generations Monopoli (Bari, Italy), June 13-11

Material and Methods

✓ Data-editing

✓ Parameter estimation has been estimated on a subset (250 herds) of the Italian Holstein

population randomly extracted; procedure was repeated 3 times,

- ✓ HTD at least 5 contemporary groups
- $\checkmark\,$ At least 5 daughters per sire in 3 herds

Final data-set was on average 632,840 repeated records from 39,574 cows and 1,434 sires, Pedigree (76,268 animals) included individuals with records and their ancestors up to 6 generations back,

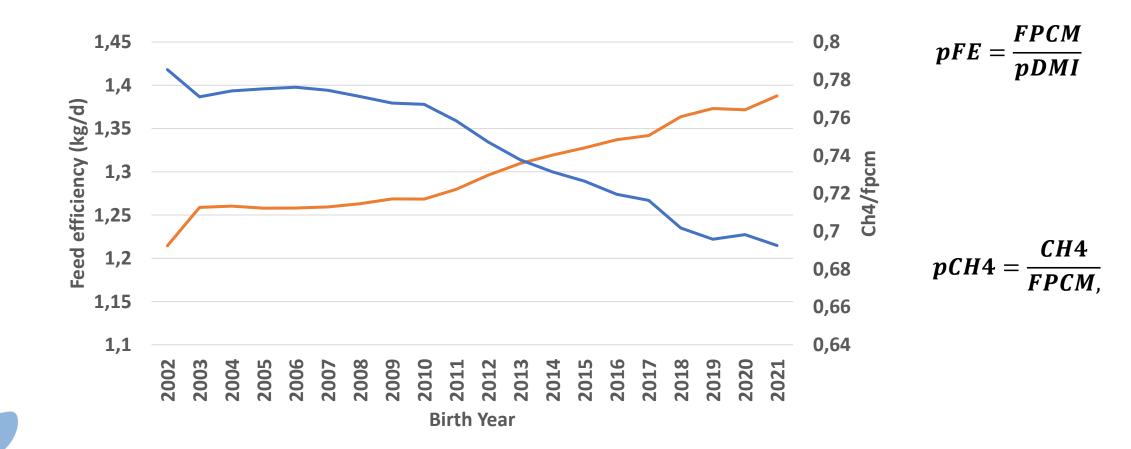
Y = HTD + YC + DIMclass * parity + age(parity) * YC * Season_calving + **a**+pe + e

Results

	Mean ± SD	h²
Milk (kg/d)	32,21±8,97	0,31
Fat (kg/d)	1,2±0,38	0,29
Protein (kg/d)	1,07 <u>+</u> 0,28	0,30
Fat (%)	3,77±0,77	0,50
Protein (%)	3,36±0,37	0,50
Fat-protein corrected milk (kg/d)	30,85±8,37	-
Predicted body weight in 1° parity cows (kg)	602,17±39,91	0,30
Metabolic body weight (kg)	126,78±8,61	-

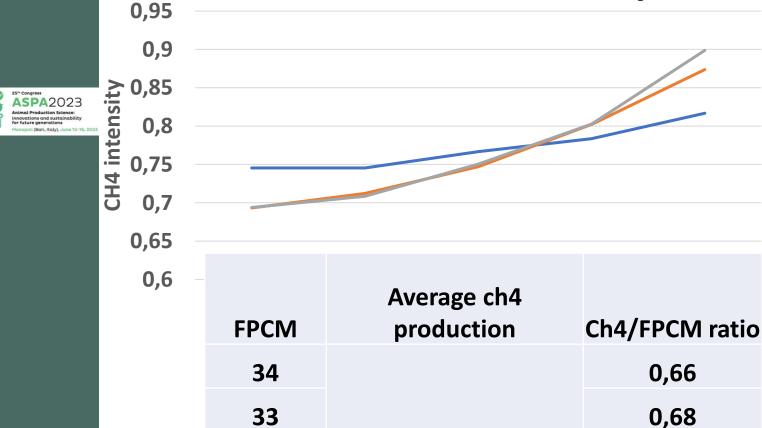
~ 50

Results


25° Congress		Mean ± SD	h²
ASPA2023 Initial Production Science: Inouclide and sustainability Hencool (Bart, Raly), June 13-16, 2023	Dry Matter Intake (kg/d)	23.73±3.42	0.14
	Predicted feed efficiency pFE (kg/d)	1,26 ± 0,18	0.25
	Predicted Ch4 intensity pCH4 (MJ/kg)	0.76±0.17	0,21

ASPA2023

Birth Year trend for feed efficiency and Ch4 produced per kg of milk energy



— Feed Efficiency — CH4(intensity)

Ch4 intensity by stage of lactation

0,70

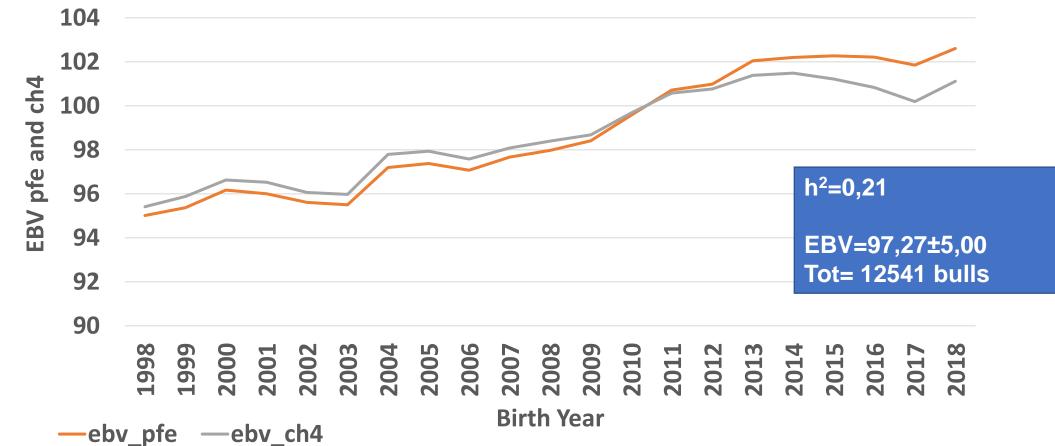
0,78

23

32

29

 ✓ Increasing stage of lactation increases the ratio between methane produced and useful energy


 Production decreases: cows have more energy to invest in the production of methane

ASPA2023 Animal Production Science:

Bull's EBV trend per year of birth

Conclusions

✓EBV for pCH4 has been developed and integrated within the Italian Holstein system

✓ Genomic Breeding value is under development

✓ This new index will be first published next december 2023

✓ EBV pCH4 will be included in a more complete Sustainability index which is already underdevelopment.