

A HOLISTIC APPROACH FOR MONITORING THE ENVIRONMENTAL SUSTAINABILITY OF THE ITALIAN HOLSTEIN POPULATION

L. Benzoni, R. Finocchiaro, G. Visentin, M. Dorigo, F. Tiezzi, M. Marusi, J. Layton, A. Bracchi, G. Bonacina, M. Zucali, G. Gislon, M. Cassandro

INTRODUCTION

- Dairy cattle is known to be impactful on greenhouse gases (GHG) emissions for **over 10%** of livestock sector emission globally (*Gerber et. Al., 2013*);
- Methane (CH₄) and carbon dioxide (CO₂) emissions have been shown to be heritable, providing the basis for applying genetic selection for their reduction (Cassandro et al., 2010);
- National breeding programs and the genetic improvement can provide relevant contribution to reduce GHG emissions;
- Many Universities, Research Centers, Associations and Private Companies have started collecting phenotypes.

INTRODUCTION

DIRECT

METHANE MEASUREMENTS METHODS

Respiration Chamber (RC)

Portable Accumulation Chamber (PAC)

SF6

Breath Sampling during milking and feeding

Greenfeed ®

Laser Methane Detector (LMD)

INDIRECTMETHODS/PROXIES

Predicted Indexes

Milk Spectra Records (MIR)

Ruminal Microbiome data

LCA

OBJECTIVES

- Collect GHG emissions data using different methods:
 - Greenfeed ®
 - Moologger ®
- Collect innovative traits data:
 - Milk Spectra Records (MIR)
 - Ruminal Microbiome data
- Validate proxies;
- **Develop tools, certifications and services** that meet community and farmers need of mitigation climate change;
- Set-up a **genetic evaluation** also including innovative traits.

MATERIALS AND METHODS

STEP 1 (2019)

Collection of methane, carbon dioxide emissions, feed intake and water intake data in ANAFIBJ Genetic Center on **Italian Holstein young bulls** candidates to AI in Italy.

ANAFIBJ GENETIC CENTER

BCS

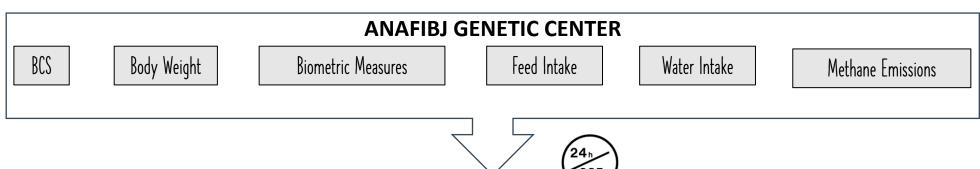
Body Weight

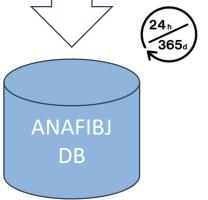
Biometric Measures

Feed Intake

Water Intake

Methane Emissions





MATERIALS AND METHODS

STEP 2 (2021)

Creation of a **daily automatic data pipeline** to incorporate these new traits into the routine database maintained by ANAFIBJ.

your **COW**

MATERIALS AND METHODS

STEP 3 (2023)

Creation of a **ISC (Italian Sustainability Consortium)** including University, Experimental Farms, Research Centers and Private Companies.

KEY FARM

Automatic Milking System (AMS)

Automatic Feeding System (AFS)

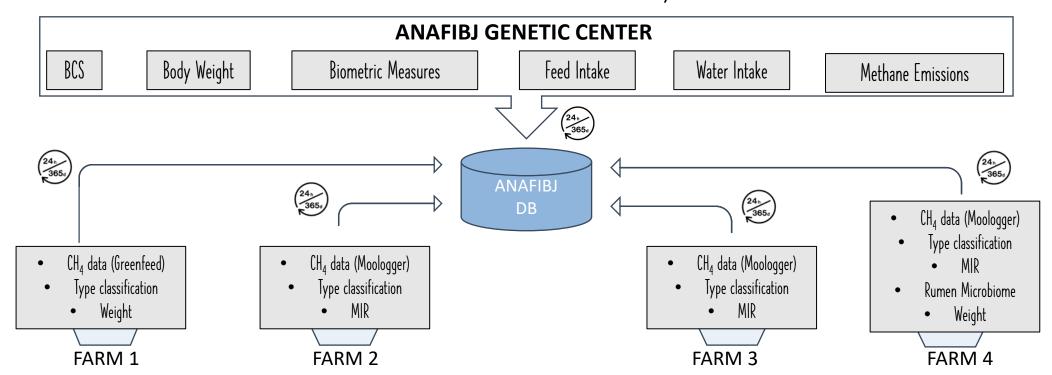
Herdbook Registered

EQUIPMENT INSTALLED

Greenfeed ®

MooLogger ®

DATA COLLECTION				
CH ₄ emissions (Greenfeed ®)	Milk Spectra Records (MIR)			
CH ₄ emissions (Moologger ®)	Ruminal Microbiome			
Type Traits	Weight			



MATERIALS AND METHODS

STEP 4 (2024)

Creation of **ISC (Italian Sustainability Consortium)** data pipeline to incorporate Consortium traits into the routine database maintained by ANAFIBJ.

ITALIAN HOLSTEIN YOUNG BULLS

- 35,653 CH₄ records (Greenfeed ®)
- 559,800 feed intake records
- 6,491 water intake records
- 2,181 BCS records
- 6,543 biometric measures records
- 2,315 weight records

272 Italian
Holstein
young bulls

ITALIAN HOLSTEIN YOUNG BULLS GREEN PASSPORT

ANAFIBJ Associazione Nazionale Allevatori della Razza Frisona. Bruna e Jersev Italiana

Bull Functionality and Environmental Impact Report

• REPORT DATE: 09/05/2024

MATRICOLA:

• DATE OF BIRTH: 20/01/2022

• GENETIC CENTER NUMBER: 1681

CFA: 9900834

• Methane Emissions:

• Mean Daily Production: 232.46 (g/day) • Average daily for the population: 237.45 (g/day)

Feed Intake:

• Mean Daily Production: 6.79 (kg/day)
• Average daily for the population: 8.81 (kg/day)

Water Intake:

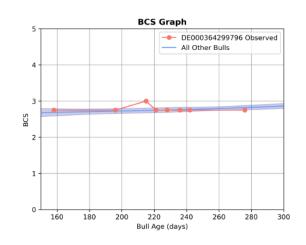

Mean Daily Production: 16.05 (kg/day)
 Average daily for the population: 20.44 (kg/day)

ANAFIBJ Associazione Nazionale Allevatori della Razza Frisona, Bruna e Jersey Italiana

Growth Report- Weight

Matricola: E Genetic Center Number: 1681

Data pesata	Eta toro (giorni)	Peso (kg)	Peso stimato (kg)	ADG (kg/giorno)	
03-10-2022	256	292.0	237.65	0.46	
20-09-2022	243	286.0	228.12	1.14	
13-09-2022	236	278.0	222.99	2.25	
05-09-2022	228	260.0	217.12	0.57	
23-08-2022	215	258.0	207.6	1.11	
04-08-2022	196	237.0	193.67	1.39	
29-06-2022	160	187.0	167.28	-	


ANAFIBJ Associazione Nazionale Allevatori della Razza Frisona, Bruna e Jersey Italiana

Growth Report- BCS

Matricola: [

3, Genetic Center Number: 1681

Eta toro (giorni)	BCS	
276	2.75	
242	2.75	
236	2.75	
228	2.75	
221	2.75	
215	3.0	
196	2.75	
158	2.75	
	(giorni) 276 242 236 228 221 215 196	(glorni) BCS 276 2.75 242 2.75 236 2.75 228 2.75 221 2.75 215 3.0 196 2.75

your **COW** our **FUTURE**

ITALIAN HOLSTEIN COWS

- 25,400 CH₄ records (Moologger ®)
 - ~ 250 CH₄ records/day

In addition, from University Farms:

- Weight
- Rumen Microbiome

For each cow enrolled:

- BCS data (1st lactation)
- Type classification
- Milk Spectra data (MIR)

120 Italian Holstein cows continuosly recorded.

Environmental Sustainability Evaluation using LCA approach

Average Predicted Methane Emission Index → Direct data

Total UAA (Utilised agricultural area)	0	Parametri	Default	Simulazione
Biogas	OSi ®No	Reference year	2024	
Organic Farm	OSi ®No	Daily milk yield of current cows (kg/d)	35,62	40,00
Amount of hay in the ration (kg/d)	12,3	Estimated annual herd milk production (q/year)	78007,80	87600,00
Amount of soybean meal in the ration (kg/d)	3	Fat (%)	3,72	
Total feed quantity (kg/d)		Protein (%)	3,40	
Amount of protein concentrate in the ration (kg/d)		Cows (lactation + dry) (n)	600	
		Heifers > 12 mo (n)	246	300
Total dry matter intake per day	27	Heifers between 12 and 6 mo (n)	184	200
Elabora Chiudi		Female calves < 6 mo (n)	110	150
Â		Age at first calving (mo)	23,49	
HERD		Average IES (Economic Sustainability Index) (Average of last 5 years)	325	
	- 7	Average Predicted Methane Emission Index	101	
		Herd milk yield sold/LU (livestock units)	8200,99	8588,24
		Pregnant cows at 120 d (%)	65	70
		Herd environmental impact (CO2/milk kg)	1,76	1,70

CONCLUSIONS

- Data collection on key-farms is crucial to create a national inventory about sustainability traits (direct and proxies) and to set up a genetic evaluation;
- Data collection in commercial farms is going to be enhanced;
- LCA is a key-tool to perform high-quality technical assistance using an holistic approach (nutritional, genetic, agronomic...).

Thanks!

Benzoni Lorenzo

lorenzobenzoni@anafi.it

www.anafibj.it

